How Mesoscopic Staircases Condense to Macroscopic Barriers

P.H. Diamond, A. Ashourvan, M. Malkov

CMTFO, CASS, and Physics; UCSD

APTWG 2016

Some Questions

Re: Drift-ZF Turbulence

- Impact of ZF well established
- Effectively linear modulation theory developed

But:

1)

- What sets scale of ZF field? $\rightarrow V'_E$
- How does modulational instability evolve nonlinearly, saturate
- N.B.: Predator-Prey feedback channel
- Saturation $\leftarrow \rightarrow$ scale connection?

Re: Barrier

- ZF/Flow shear \rightarrow barrier connection?
- I-phase \rightarrow LCO \rightarrow transport bifurcation study is ~ 0D
- Mesoscale \rightarrow Macroscale coupling in barrier transitions?
- Mechanisms of 'non-locality'?

Outline

- The Questions
- The ExB staircase
- Beyond the color VG a model:

Hasegawa – Wakatani staircase

- Global transport bifurcations via condensation
- Some ideas for future study

Motivation: ExB staircase formation

- ExB flows often observed to self-organize in magnetized plasmas eg. mean sheared flows, zonal flows, ...
- `ExB staircase' is observed to form

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. '10)

- flux driven, full f simulation
- Quasi-regular pattern of shear layers and profile corrugations
- Region of the extent $\Delta \gg \Delta_c$ interspersed by temp. corrugation/ExB jets

 \rightarrow ExB staircases

- so-named after the analogy to PV staircases and atmospheric jets
- Step spacing \rightarrow avalanche outer-scale

- Interesting as:
 - Clear scale selection
 - Clear link of:
 - ZF scale \leftarrow \rightarrow avalanche scale \rightarrow corrugation

But:

- Systematic scans lacking
- Somewhat difficult to capture
- Need a <u>MODEL</u>

The Hasegawa-Wakatani Staircase:

Profile Structure:

From Mesoscopics \rightarrow Macroscopics

H-W Drift wave model – Fundamental prototype

Hasegawa-Wakatani : simplest model incorporating instability

$$V = \frac{c}{B}\hat{z} \times \nabla \phi + V_{pol}$$

$$J_{\perp} = n |e| V_{pol}^{i} \qquad \eta J_{\parallel} = -\nabla_{\parallel} \phi + \nabla_{\parallel} p_{e}$$

$$\nabla_{\perp} \cdot J_{\perp} + \nabla_{\parallel} J_{\parallel} = 0 \qquad \Rightarrow \text{ vorticity:} \qquad \rho_{s}^{2} \frac{d}{dt} \nabla^{2} \phi = -D_{\parallel} \nabla_{\parallel}^{2} (\phi - n) + v \nabla^{2} \nabla^{2} \phi$$

$$\frac{dn_{e}}{dt} + \frac{\nabla_{\parallel} J_{\parallel}}{-n_{0} |e|} = 0 \qquad \Rightarrow \text{ density:} \qquad \frac{d}{dt} n = -D_{\parallel} \nabla_{\parallel}^{2} (\phi - n) + D_{0} \nabla^{2} n$$

 \rightarrow PV conservation in inviscid theory

$$\frac{d}{dt}\left(n-\nabla^2\phi\right)=0$$

 \rightarrow PV flux = particle flux + vorticity flux

 \rightarrow zonal flow being a counterpart of particle flux

• Hasegawa-Mima ($D_{\parallel}k_{\parallel}^2/\omega >> 1 \rightarrow n \sim \phi$) $\frac{d}{dt}(\phi - \rho_s^2 \nabla^2 \phi) + \upsilon_* \partial_y \phi = 0$

The Reduced 1D Model

Reduced system of evolution Eqs. is obtained from HW system for DW turbulence.

Two fluxes Γ_n , Γ_u set model !

What is new in this model?

 \odot In this model PE conservation is a central feature.

OMixing of Potential Vorticity (PV) is the fundamental effect regulating the interaction between turbulence and mean fields. Mixing <u>inhomogeneous</u>

$$D_n \cong l^2 \frac{\mathcal{E}}{\alpha} \qquad \qquad \chi \cong c_{\chi} l^2 \frac{\mathcal{E}}{\sqrt{\alpha^2 + a_u u^2}} \qquad \qquad * \begin{array}{c} l & \underline{\text{Dynamic mixing length}} \\ \alpha & \underline{\text{Parallel diffusion rate}} \end{array} \right) \qquad \qquad \text{Rhines} \\ \text{scale sets} \end{array}$$

Olnhomogeneous mixing of PV results in the sharpening of density and vorticity gradients in some regions and weakening them in other regions, leading to shear lattice and density staircase formation.

Jet sharpening in stratosphere, resulting from inhomogeneous mixing of PV. (McIntyre 1986)

$$PV \quad Q = \nabla^2 \psi + \beta y$$

Relative vorticity

Planetary vorticity

10

Perspective on (Rhines) Scale

• Note:
$$l^2 = \frac{1}{1+1/l_{Rh}^2} \rightarrow \frac{1}{1+\langle q \rangle^2 / \epsilon}$$
 $(l_f \sim 1)$

• Reminiscent of weak turbulence perspective:

Ala' Dupree'67:

$$D_{pv} \approx \frac{1}{k^2} \left(\sum_{\vec{k}} k^2 \langle \tilde{V}^2 \rangle_{\vec{k}} - \frac{k_x^2 (\langle q \rangle')^2}{(k^2)^2} \right)^{1/2}$$

Steeper $\langle q \rangle'$ quenches diffusion \rightarrow mixing reduced via <u>PV gradient</u> feedback

$$D_{pv} \approx \frac{l_0^2 \epsilon^{\frac{1}{2}}}{1 + \frac{l_0^2}{\epsilon} (\langle q \rangle')^2} \quad \epsilon$$

- $\omega \text{ vs } \Delta \omega$ dependence gives D_{pv} roll-over with steepening
- Rhines scale appears naturally, in feedback strength \rightarrow roll over scale
- Recovers effectively same model

Physics:

- (1) "Rossby wave elasticity' (MM) \rightarrow steeper $\langle q \rangle' \rightarrow$ stronger memory (i.e. more 'waves' vs turbulence)
- \rightarrow 2 <u>Distinct from shear suppression</u> \rightarrow interesting to dis-entangle

Staircase structure

Snapshots of evolving profiles at t=1 (non-dimensional time)

Dynamic Staircases

 $\odot \mbox{Shear}$ pattern detaches and delocalizes from its initial position of formation.

 ○Mesoscale shear lattice moves in the upgradient direction. Shear layers condense and disappear at x=0.

 \odot Shear lattice propagation takes place over much longer times. From t $^{\circ}O(10)$ to t $^{\circ}(10^{4})$.

•Barriers in density profile move upward in an "Escalator-like" motion.

Mergers Occur

Nonlinear features develop from 'linear' instabilities

Local profile reorganization: Steps and jumps merge (continues up to times t~O(10))

х

Illustrating the merger sequence (QG-HM)

Note later staircase mergers induce strong flux episodes!

- The Point:
 - Macroscopic barrier emerges from hierarchical sequence of mergers and propagation, condensation
 - (Somewhat) familiar bi-stable transport model

But

- Barrier formation is NOT a local process!
- → Begs for flux driven, not BVP analysis!

Macroscopics: Flux driven evolution

We add an external particle flux drive to the density Eq., use its amplitude Γ_0 as a control parameter to study:

✓ What is the mean profile structure emerging from this dynamics?

 \checkmark Variation of the macroscopic steady state profiles with Γ_0 (shearing, density, turbulence, and flux).

✓ Transport bifurcation of the steady state (macroscopic)

✓ Particle flux-density gradient landscape.

$$\partial_t n = -\partial_x \Gamma - \partial_x \Gamma_{dr}(x,t) \xrightarrow{\bullet} \text{Write source} \\ \text{as } \nabla \cdot \Pi_{\text{ex}} \\ \text{External particle flux (drive)} \qquad \Gamma_{dr}(x,t) = \Gamma_0(t) \exp[-x/\Delta_{dr}] \\ \end{array}$$

Internal particle flux (turb. + col.)

$$\Gamma = -[D_n(\mathcal{E}, \partial_x q) + D_{col}]\partial_x n$$

Transition to Enhanced Confinement can occur

Steady state solution for the system undergoes a transport bifurcation as the flux drive amplitude \prod is raised above a threshold Γ_{th} n(x) $\varepsilon(\mathbf{x})$ $\Gamma_1 < \Gamma_{th} < \Gamma_2$ Γ_2 Γ_1 12 3 $\Gamma_0 = \Gamma_1 \rightarrow \text{Normal Conf. (NC)}$ 10 $\Gamma_0 = \Gamma_2 \rightarrow$ Enhanced Conf. (EC)² Γ_2 8 Γ_1 6 With NC to EC transition we observe: 0 0.2 0.8 0.0 0.4 0.6 1.0 0.2 0.8 0.0 0.4 0.6 1.0 X Х Rise in density level $\Gamma_{n,\text{turb}}(\mathbf{x})$ u(x)Drop in turb. PE and turb. 0.008 3.0 Γ_1 particle flux beyond the barrier 2.5 0.006 Γ_2 position 2.0 0.004 Enhancement and sign reversal 1.5 0.002 of vorticity (shearing field) 1.0 0.000 Γ_2 0.5 -0.0020.0 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.0 0.4 0.6 0.8 1.0 X X

Hysteresis evident in the GLOBAL flux-gradient relation

In one sim. run, from initially flat density profile, $\ \Gamma_0$ is adiabatically raised and lowered back down again.

Forward Transition:

Abrupt transition from NC to EC (from A to B). During the transition the system is not in quasi-steady state.

From B to C:

We have continuous control of the barrier position Barrier moves to the right with lowering the density gradient.

Backward Transition:

Abrupt transition from EC to NC (from C to D). Barrier moves rapidly to the right boundary and disappears. system is not in quasi-steady.

0.008

0.006

0.004

0.002

0.000

-0.002

$$\langle \Gamma
angle = \int_0^1 \Gamma(x) dx$$

$$\langle -\partial_x n \rangle = \int_0^1 [-\partial_x n(x,t)] dx$$

Role of Turbulence Spreading

• Large turbulence spreading wipes out features on smaller spatial scales in the mean field profiles, resulting in the formation of fewer density and vorticity jumps.

$$\partial_t \varepsilon = \beta \partial_x [(l^2 \varepsilon^{1/2}) \partial_x \varepsilon] + \dots$$

- $\beta \rightarrow 0$ excessive profile roughness

Initial condition dependence

○Solutions are not sensitive to initial value of turbulentPE.

OInitial density gradient is the parameter influencing the subsequent evolution in the system.

OAt lower viscosity more steps form.

OWidth of density jumps grows with the initial density gradient.

• Staircases $\leftarrow \rightarrow$ Life

A little t.s. smooths the roughness

Too much t.s. makes a mess

Observations and Lessons

→ Towards a Better Model

Lessons

• A) Staircases happen

- Staircase is 'natural upshot' of modulation in bistable/multi-stable system
- Bistability is a consequence of mixing scale dependence on gradients, intensity $\leftarrow \rightarrow$ define feedback process
- Bistability effectively <u>locks</u> in inhomogeneous PV mixing required for zonal flow formation
- Mergers result from accommodation between boundary condition, drive(L), initial secondary instability
- Staircase is natural extension of quasi-linear modulational instability/predator-prey model \rightarrow couples to transport and b.c. $\leftarrow \rightarrow$ simple natural phenomenon

Lessons

- B) Staircases are Dynamic (GK missed, completely)
 - Mergers occur
 - Jumps/steps migrate. B.C.'s, drive all essential.
 - Condensation of mesoscale staircase jumps into macroscopic
 transport barriers occurs. → Route to barrier transition by global
 profile corrugation evolution vs usual picture of local dynamics
 - Global 1st order transition, with macroscopic hysteresis occurs
 - Flux drive + B.C. effectively constrain system states.

Status of Theory

- N.B.: Alternative mechanism via jam formation due flux-gradient time delay → see Kosuga, P.D., Gurcan; 2012, 2013
- a) Elegant, systematic WTT/Envelope methods miss elements of feedback, bistability
 - b) $K \epsilon$ genre models crude, though elucidate much
- Some type of synthesis needed
- <u>Distribution</u> of dynamic, nonlinear scales appear desirable
- <u>Total</u> PV conservation has demonstrated utility and leverage. Underutilized in MFE.

- Staircases appear to be:
 - Natural solution to "predator-prey" problem domains
 via decomposition (akin spinodal)
 - Natural reduced DOF models of profile evolution
 - Realization of 'non-local' dynamics in transport
 - → Global bifurcation via internal re-arrangement

Conclusions:

\rightarrow Expect interest in staircases to increase

in near future.

- This material is based upon work supported by the U.S. Department of Energy, Office of Science,
 - Office of Fusion Energy Science, under Award
 - Number DE-FG02-04ER54738