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Some Questions
I) 

Re: Drift-ZF Turbulence

– Impact of ZF well established

– Effectively linear modulation theory developed

But:

– What sets scale of ZF field? à 
– How does modulational instability evolve nonlinearly, saturate

– N.B.: Predator-Prey feedback channel

– Saturation ßà scale connection?



Re: Barrier

– ZF/Flow shear à barrier connection?

– I-phase à LCO à transport bifurcation study is ~ 0D

– Mesoscale à Macroscale coupling in barrier transitions?

– Mechanisms of ‘non-locality’?



Outline

• The Questions

• The ExB staircase

• Beyond the color VG – a model:

Hasegawa – Wakatani staircase

• Global transport bifurcations via condensation

• Some ideas for future study



Motivation: ExB staircase formation

• `ExB staircase’ is observed to form

- so-named after the analogy to PV staircases 
and atmospheric jets

- Step spacing à avalanche  outer-scale

- flux driven, full f simulation

- Region of the extent 
interspersed by temp. corrugation/ExB jets

- Quasi-regular pattern of shear layers 
and profile corrugations

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. ’10)

→ ExB staircases

• ExB flows often observed to self-organize in magnetized plasmas
eg.  mean sheared flows, zonal flows, ...



• Interesting as:

– Clear scale selection

– Clear link of:

– ZF scale ßà avalanche scale à corrugation

But:

– Systematic scans lacking

– Somewhat difficult to capture

• Need a MODEL



The Hasegawa-Wakatani Staircase:

Profile Structure: 

From Mesoscopics à Macroscopics
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• Hasegawa-Mima (                                              ) 

H-W Drift wave model – Fundamental prototype 

• Hasegawa-Wakatani : simplest model incorporating instability
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ẑ ´ Ñf +Vpol

J^ = n e V i
pol

d
dt

n - Ñ2f( ) = 0

à zonal flow being a counterpart of particle flux  
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The Reduced 1D Model

  

� 

¶tn = -¶xGn +¶x[Dc¶xn],        Gn = ?v x ?n = -Dn¶xn

¶tu = -¶xPu +¶x[mc¶xu],        Pu = ?v x ?u = (c - Dn )¶xn - c¶xu

Mean field equations:

� 

¶te = ¶x[De¶xe ] - (Gn - Gu)[¶x (n - u)] -e c
-1e 3 / 2 + P

Turbulent Potential Enstrophy (PE): 

� 

e =
1
2

?n - ?u ( )2

Turbulence evolution: (Potential Enstrophy)

Turbulence spreading Internal production dissipation
External 
production

density

vorticity
Residual vort. flux
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� 

 Taylor ID :  Pu = ?v x ?u = ¶x ?v x ?v y

Reduced system of evolution Eqs. is obtained from HW system for DW turbulence.

  

� 

log(N /N0) = n(x, t) + ?n (x,y, t),                    rs
2Ñ̂2 ej /Te( )= u(x, t) + ?u (x,y, t)

� 

q = n - u,Potential Vorticity (PV): 

Reduced density: Vorticity:

Variables:

� 

u = ¶xVy Zonal shearing field 

Turb. viscosity

� 

~ ge

Two fluxes ,  set model !

Two components

From closure

Reflect instability



What is new in this model?
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o In this model PE conservation is a central feature.
oMixing of Potential Vorticity (PV) is the fundamental effect regulating the interaction

between turbulence and mean fields. Mixing inhomogeneous
oDimensional and physical arguments used to obtain functional forms for the turbulent

diffusion coefficients. From the QL relation for HW system we obtain

oInhomogeneous mixing of PV results in the sharpening of density and vorticity
gradients in some regions and weakening them in other regions, leading to shear lattice
and density staircase formation.

Jet sharpening in stratosphere, 
resulting from inhomogeneous 
mixing of PV. (McIntyre 1986) 

� 

Q = Ñ2y + byPV

Relative 
vorticity

Planetary
vorticity

� 

Dn @ l2 e
a

� 

c @ cc l2 e
a 2 + auu

2 Parallel diffusion rate

� 

a

� 

l Dynamic mixing length

Rhines
scale sets

*



Perspective on (Rhines) Scale

• Note:       = / à
   /

• Reminiscent of weak turbulence perspective:

 =  = ∑  
Ala’ Dupree’67:

 ≈  	 ∑     −      /
Steeper 〈〉′ quenches diffusion à mixing reduced via PV gradient feedback
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 = −  /Δ ≈ 

( ∼ 1)



 ≈ 	1 +    
•  vs Δ dependence gives  roll-over with steepening

• Rhines scale appears naturally, in feedback strength à roll over scale

• Recovers effectively same model

Physics: 

① “Rossby wave elasticity’ (MM) à steeper 〈〉′à stronger memory (i.e. 

more ‘waves’ vs turbulence)

② Distinct from shear suppression à interesting to dis-entangle
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Staircase structure
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Densityshearing 

oStaircase in density profile: 

jumps         regions of steepening 

steps          regions of flattening 

oAt the jump locations, turbulent PE is suppressed.

oAt the jump locations, vorticity gradient is positive

Initial conditions:   

� 

n = g0(1 - x),    u = 0,   e = e 0

  

� 

n(0, t) = g0,  n(1, t) = 0;    u(0,1;t) = 0;   ¶xe (0,1;t) = 0Boundary conditions:

density grad. 

turb. PE

Snapshots of evolving profiles at t=1 (non-dimensional time) 

Density
+
Vorticity
lattices

Structures:



oShear pattern detaches and delocalizes from 
its initial position of formation.

oMesoscale shear lattice moves in the up-
gradient direction. Shear layers condense  and 
disappear at x=0.   

oShear lattice propagation takes place over 
much longer times. From t~O(10) to t~(104).

Dynamic Staircases

14

oBarriers in density profile move upward in 
an “Escalator-like” motion.

t=700

t=1300

è Macroscopic Profile Re-structuring

‘Non-locality’



Mergers Occur

15

Nonlinear features develop from ‘linear’ instabilities

Merger between jumps
Local profile reorganization: Steps and jumps merge (continues up to times t~O(10)) 

Merger between steps

� 

e(x = 0,1) = 0

� 

¶xe (x = 0,1) = 0

� 

t = 0.02

� 

t = 0.1

� 

t =10

shearing shearing
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Illustrating the merger sequence (QG-HM)

Note later staircase mergers induce strong flux episodes!

- 
-  top - 

- Γ bottom



(a) Fast merger of micro-scale SC. Formation 
of meso-SC.

(b) Meso-SC coalesce to barriers
(c) Barriers propagate along gradient, 

condense at boundaries
(d) Macro-scale stationary profile   

Time evolution of profiles    
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c
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log10(t)

� 

u

� 

x

Shearing field

� 

Ñn

Steady
state

� 

x



• The Point:

– Macroscopic barrier emerges from hierarchical 

sequence of mergers and propagation, condensation

– (Somewhat) familiar bi-stable transport model

But

– Barrier formation is NOT a local process!

à Begs for flux driven, not BVP analysis!



� 

Gdr(x, t) = G0(t)exp[-x /D dr]

G = -[Dn (e,¶xq) + Dcol ]¶xn

Macroscopics: Flux driven evolution
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We add an external particle flux drive to the density Eq., use its amplitude      as a 
control parameter to study: 

üWhat is the mean profile structure emerging from this dynamics?

üVariation of the macroscopic steady state profiles with     . ( shearing, density, 
turbulence, and flux).

üTransport bifurcation of the steady state (macroscopic)

üParticle flux-density gradient landscape.    

� 

¶tn = -¶xG -¶xGdr(x, t)

External particle flux (drive)

Internal particle flux (turb. + col.)

� 

G0 � 

G0

è Write source 
as  ⋅ 



Transition to Enhanced Confinement can occur 20

� 

G1 < Gth < G2

� 

G1� 

G2

� 

G1

� 

G2
� 

G2

� 

G1

� 

G2

� 

G1

§Rise in density level

§Drop in turb. PE and turb. 
particle flux beyond the barrier 
position

§Enhancement and sign reversal 
of vorticity (shearing field)    

With NC to EC transition we observe: 

Steady state solution for the system undergoes a transport bifurcation as the flux drive 
amplitude      is raised above a threshold       .

� 

Gth

� 

G0

  

� 

G0 = G1 ®  Normal Conf. (NC)
G0 = G2 ®  Enhanced Conf. (EC)



Hysteresis evident in the GLOBAL flux-gradient relation
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Forward Transition:
Abrupt transition from NC to EC (from A to B). During the
transition the system is not in quasi-steady state.

From B to C:
We have continuous control of the barrier position Barrier
moves to the right with lowering the density gradient.

Backward Transition:
Abrupt transition from EC to NC (from C to D). Barrier moves
rapidly to the right boundary and disappears. system is not in
quasi-steady.

In one sim. run, from initially flat density profile,     
is adiabatically raised and lowered back down again. 

� 

G0
Global



Initial condition dependence

oSolutions are not sensitive to initial value of turbulent 
PE.
oInitial density gradient is the parameter influencing the 
subsequent evolution in the system.
oAt lower viscosity more steps form.
oWidth of density jumps grows with the initial density 
gradient. 

o Large turbulence spreading wipes out features on 
smaller spatial scales in the mean field profiles, 
resulting in the formation of fewer density and 
vorticity jumps.

Role of Turbulence Spreading 

� 

¶te = b¶x[(l
2e1/ 2)¶xe ] + ...

-  → 0 excessive profile roughness



• Staircases ßà Life

A little t.s. smooths the roughness

Too much t.s. makes a mess



Observations and Lessons 

à Towards a Better Model
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Lessons
• A) Staircases happen

– Staircase is ‘natural upshot’ of modulation in bistable/multi-stable system

– Bistability is a consequence of mixing scale dependence on gradients, 

intensity ßà define feedback process

– Bistability effectively locks in inhomogeneous PV mixing required for zonal 

flow formation

– Mergers result from accommodation between boundary condition, drive(L), 

initial secondary instability

– Staircase is natural extension of quasi-linear modulational

instabilty/predator-prey model à couples to transport and b.c. ßà simple 

natural phenomenon



Lessons

• B) Staircases are Dynamic (GK missed, completely)

– Mergers occur

– Jumps/steps migrate. B.C.’s, drive all essential.

– Condensation of mesoscale staircase jumps into macroscopic 

transport barriers occurs. è Route to barrier transition by global 

profile corrugation evolution vs usual picture of local dynamics

– Global 1st order transition, with macroscopic hysteresis occurs

– Flux drive + B.C. effectively constrain system states.



Status of Theory
• N.B.: Alternative mechanism via jam formation due flux-gradient 

time delay à see Kosuga, P.D., Gurcan; 2012, 2013

• a) Elegant, systematic WTT/Envelope methods miss elements of 

feedback, bistability

b)  −  genre models crude, though elucidate much

• Some type of synthesis needed

• Distribution of dynamic, nonlinear scales appear desirable

• Total PV conservation has demonstrated utility and leverage. 

Underutilized in MFE.



• Staircases appear to be:

– Natural solution to “predator-prey” problem domains 

via decomposition (akin spinodal)

– Natural reduced DOF models of profile evolution

– Realization of ‘non-local’ dynamics in transport

è Global bifurcation via internal re-arrangement



Conclusions:

àExpect interest in staircases to increase 

in near future.
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